Superconductor-to-Insulator Transition in the $Bi_2Sr_{3-x}Y_xCu_2O_{8+y}$ System

M. A. SUBRAMANIAN, A. R. STRZELECKI, J. GOPALAKRISHNAN, AND A. W. SLEIGHT

Central Research and Development Department, E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Deleware 19898

Communicated by J. M. Honig, August 29, 1988

The compositions $Bi_2Sr_{3-x}Y_xCu_2O_8$ have been prepared with the structure of superconducting $Bi_2Sr_{3-x}Ca_xCu_2O_8$. The range of x in $Bi_2Sr_{3-x}Y_xCu_2O_8$ is roughly 0.2 to 1.0 and chemical analysis shows that the Cu^{III} concentration increases with decreasing x. The compositions are superconducting $(T_c \sim 65-72 \text{ K})$ for x = -0.2 to 0.4. Insulating behavior is observed in the region from x = 0.5 to 1.0. This insulating region would not be expected if the Bi 6p band overlapped the Fermi level, as indicated by recent band structure calculations for $Bi_2Sr_2CaCu_2O_8$. @ 1988 Academic Press, Inc.

Introduction

The occurrence of superconductivity adjacent to a metal-insulator boundary is an established feature of many systems as the composition is varied. For oxides, insulator-to-superconductor transitions occur as function of x in the system $SrTiO_{3-x}(1)$, A_xWO_3 (2), $La_{2-x}A_xCuO_4$ (3), and YBa₂ Cu_3O_{6+x} (4). Superconductivity at highest temperatures is found in the systems Bi₂Sr₂ $Ca_{n-1}Cu_nO_{2n+4}$ (5, 6), $Tl_2Ba_2Ca_{n-1}Cu_nO_{2n+4}$ (7), and TlBa₂Ca_{n-1}Cu_nO_{2n+3} (8, 9) where *n* ranges from 1 to 3 in bulk phases. We report here on an n = 2 system of the Bi₂Sr₂ CaCu₂O₈ type, which shows an insulatorto-superconductor transition as the composition is varied. Similar behavior has been reported for $Bi_2(Sr,Ca)_{3-x}Y_xCu_2O_8$ systems (10, 11).

0022-4596/88 \$3.00 Copyright © 1988 by Academic Press, Inc. All rights of reproduction in any form reserved.

Experimental

The compounds were synthesized by reacting Bi_2O_3 , SrO_2 , Y_2O_3 , and CuO in stoichiometric ratios at 900°C for 12 to 24 hr. Purity of the phases was checked by powder X-ray diffraction data using a SCIN-TAG (PAD IV) automated powder diffractometer. The Cu³⁺ content was analyzed by titrimetry. Superconducting transition temperatures were determined by magnetic flux exclusion measurements.

Results

The range of x in the Bi₂Sr_{3-x}Y_xCu₂O₈ system was determined from X-ray diffraction data. The a, b, and c lattice parameters varied smoothly form x = -0.2 to 1.0 (Fig. 1). Outside this range, impurity phases

FIG. 1. (Top) Variation of *a* (average *a* and *b*) lattice parameter as a function of *x* for Bi₂Sr_{3-x}Y_xCu₂O_{8+y}. (Bottom) Variation of *c* lattice parameter as a function of *x* for Bi₂Sr_{3-x}Y_xCu₂O_{8+y}.

were detected in addition to the n = 2phase. The c axis decreases with increasing x, as might be expected, since Y^{3+} is smaller than Sr²⁺. However, there is an increase in the *a* axis with increasing x which can be attributed to the decrease in the copper oxidation state which leads to longer Cu-O distances within the copper oxygen sheets. Compositions are superconducting for x = -0.2 to 0.4 ($T_c - 65-72$ K). Chemical analysis indicated a substantial CuIII concentration for superconducting compositions such as Bi₂Sr_{1.7}Y_{0.3}Cu₂O₈. However, the Cu^{III} concentration decreases sharply with increasing concentration of Y (Fig. 2). The decrease in Cu^{III} concentration also results in loss of superconductivity and in a change to insulating behavior. Electrical resistivity measurements on pressed powders indicate that for x = 0.5 to 1.0 the compounds are semiconductors; as x increases the room temperature resistivity also increases.

Discussion

Bi₂Sr_{3-x}Ca_xCu₂O₈ phases are known over a range of x that does not include x = 0 (6). The nonexistence of Bi₂Sr₃Cu₂O₈ apparently arises because the cation site between the adjacent CuO₂ layers requires a relatively small cation such as Ca²⁺. Although some substitution of Ca²⁺ by Sr²⁺ occurs, complete substitution is unknown in any of these layered copper oxides, including the $n = \infty$ member, (Sr,Ca)CuO₂ (12). However, Y³⁺ is smaller than Sr²⁺, and thus Y³⁺ can serve to decrease the average size of the cation between the adjacent CuO₂ layers.

An understanding of the $Bi_2Sr_{3-x}Y_xCu_2O_8$ systems is complicated by our lack of understanding of the $Bi_2Sr_{3-x}Ca_xCu_2O_8$ system where there are interrelated unresolved compositional and structural issues. Written as $Bi_2Sr_{3-x}Ca_xCu_2O_8$, no Cu^{III} would be present in this compound. This would seem

FIG. 2. Variation of Cu^{3+} content (filled circles) and T_c (open circles) as a function of x for $Bi_2Sr_{3-x}Y_x$ Cu_2O_{8+y} .

inconsistent with the observed superconductivity; furthermore, chemical analysis shows a significant Cu^{III} content (6). The defect giving rise to Cu^{III} might be oxygen interstitials, but current evidence suggests that Cu^{III} is probably present even without such interstitials. Structural refinements show that there is no significant oxygen content between the adjacent CuO₂ layers (6). There is evidence for oxygen between the adjacent Bi-O layers in certain preparations (13). However, this interstitial oxygen causes a decrease in T_c and presumably results in oxidation of BiIII to BiV rather than of Cu^{II} to Cu^{III}. Another defect mechanism for producing CuIII would be cation vacancies on the Sr²⁺ site. Some microprobe data appear to support the possibility (14), but recent crystallographic results (15) indicate that a deficiency of Bi^{3+} is more likely than a deficiency of A^{2+} cations. The suggestion that Bi³⁺ might substitute for Ca²⁺ between adjacent CuO₂ layers adds a further complication since this would push the average oxidation state of copper below 2.

Given the evidence for Cu^{III}, the Bi₂ Sr_{3-x}Ca_xCu₂O₈ and Bi₂Sr_{3-x}Y_xCu₂O₈ formulations must be regarded as idealized. Whatever the cause for Cu^{III}, the substitution of Y^{3+} for A^{2+} should result in a decreased average oxidation state for copper. In fact a decreased Cu^{III} content is observed both for the Bi₂Sr_{3-x}Cu₂O₈ and Bi₂ $(Sr,Ca)_{3-r}Y_rCu_2O_8$ systems (10, 11). For the Bi₂Sr₂YCu₂O₈ end member one might expect the presence of some Cu^I. We have XANES experiments underway on $Bi_2Sr_2YCu_2O_8$ to search for Cu^I.

Another suggestion based on band structure calculations (16) is that the Cu^{III} content in Bi₂Sr₂CaCu₂O₈ results from an overlap of the Bi 6p band with the Cu $d_{x^2-y^2}$ -O $2p\sigma$ band at the Fermi level. This proposal makes little sense on chemical grounds since it would be akin to oxidation of Cu^{II} by Bi^{III}. The band structure calculations are misleading because they are based on an idealized structure whose Bi–O distances differ widely from the real structure. In an oxidized system, the Bi 6p band is expected to lie well above the Fermi level. The insulating regions in the Bi₂(Sr,Ca)_{3-x}Y_xCu₂O₈ systems furnish further proof that the Bi 6p band does not overlap the Fermi level.

A metal-insulator boundary has now been found in the systems $La_{2-x}A_xCuO_4$, $YBa_2Cu_3O_{6+x}$, and $Bi_2Sr_{3-x}Y_xCu_2O_8$. In the former two systems, it has been shown that the insulating state is associated with antiferromagnetism (17, 18). Recent muon spin studies have resonance shown that $Bi_2Sr_2YCu_2O_8$ is also antiferromagnetic with a Néel temperature of about 210 K (19). Thus in these three systems, longrange magnetic order is apparently destroyed through Cu^{III} doping before superconductivity can arise.

References

- 1. T. T. SCHOOLEY, W. R. HOSLER, AND M. L. COHEN, Phys. Rev. Lett. 12, 474 (1964).
- A. R. Sweedler, C. RAUB, AND B. T. MAT-THIAS, Phys. Lett. 15, 108 (1965).
- T. G. BEDNORZ AND K. A. MÜLLER, Z. Phys. B 64, 189 (1986); K. FUEKI, K. KITAZAWA, K. KISHIO, T. HASEGAWA, S. UCHIDA, H. TAKAGI, AND S. TANAKA, *in* "Chemistry of High-Temperature Superconductors," ACS Symposium Series 351, pp. 38-48, American Chemical Society, Washington, DC (1987).
- M. K. WU, J. R. ASHBURN, C. J. TORNG, P. H. HOR, R. L. MENG, L. GAO, Z. J. HUANG, Y. Q. WANG, AND C. W. CHU, *Phys. Rev. Lett.* 58, 908 (1987); for a recent review of the YBa₂Cu₃O₇ system, see G. F. HOLLAND AND A. M. STACY, *Acc. Chem. Res.* 21, 8 (1988) and J. M. WILLIAMS *et al., Acc. Chem. Res.* 21, 1 (1988).
- H. MAEDA, Y. TANAKA, M. FUKUTOMI, AND T. ASANO, Japan J. Appl. Phys. 27, L209 (1988).
- M. A. SUBRAMANIAN, C. C. TORARDI, J. C. CALABRESE, J. GOPALAKRISHNAN, K. J. MOR-RISSEY, T. R. ASKEW, R. B. FLIPPEN, U. CHOWDHRY, AND A. W. SLEIGHT, Science 239, 1015 (1988).
- 7. C. C. TORARDI, M. A. SUBRAMANIAN, J. C. CALABRESE, J. GOPALAKRISHNAN, K. J. MOR-RISSEY, T. R. ASKEW, R. B. FLIPPEN, U.

CHOWDHRY, AND A. W. SLEIGHT, Science 240, 631 (1988).

- S. S. P. PARKEN, V. Y. LEE, A. I. NAZZAL, R. SAVOY, R. BEYERS, AND S. J. LAPLACA, *Phys. Rev. Lett.* 61, 750 (1988).
- 9. M. A. SUBRAMANIAN, J. P. PARISE, J. C. CALA-BRESE, C. C. TORARDI, J. GOPALAKRISHNAN, AND A. W. SLEIGHT, J. Solid State Chem., in press.
- 10. A. MANTHIRAM AND J. B. GOODENOUGH, Appl. Phys. Lett. 55, 420 (1988).
- 11. R. YOSHIZAKI, Y. SAITO, Y. ABE, AND H. IKEDA, *Physica C* **152**, 408 (1988).
- 12. T. SIEGRIST, S. M. ZAHURAK, D. W. MURPHY, AND R. S. ROTH, *Nature (London)* 334, 231 (1988).

- 13. P. COPPENS et al., submitted for publication.
- 14. A. K. CHEETHAM, A. M. CHIPPENDALE, AND S. J. HIBBLE, Nature (London) 333, 21 (1988).
- 15. Y. GAO, P. LEE, P. COPPENS, M. A. SUBRA-MANIAN, AND A. W. SLEIGHT, Science 241, 954 (1988).
- M. S. HYBERTSEN AND L. F. MATTHEISS, *Phys. Rev. Lett.* **60**, 1661 (1988); F. HERMAN, R. V. KASOWSKI, AND W. Y. HSU, *Phys. Rev. B.* **38**, 204 (1988).
- 17. Y. J. UEMURA et al., Phys. Rev. Lett. 59, 1045 (1987).
- 18. J. H. BREWER et al., Phys. Rev. Lett. 60, 1073 (1988).
- 19. Y. J. UEMURA et al., J. Phys. (Paris), in press.